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Abstract

Electro-optical (EO) images are crucial for a wide range of001
remote sensing applications. However, EO imagery has in-002
herent limitations, including an inability to penetrate cloud003
cover or capture nighttime images. Synthetic Aperture004
Radar (SAR) images address these limitations by provid-005
ing consistent imaging capabilities regardless of weather006
or lighting conditions. Nevertheless, SAR images are af-007
fected by speckle noise, which complicates analysis and lim-008
its the direct applicability of EO-based algorithms. To ad-009
dress these challenges, we introduce SAR2Earth, a bench-010
mark dataset specifically designed for SAR-to-EO transla-011
tion. By translating SAR images into EO-like represen-012
tations, SAR2Earth enables the application of the exten-013
sive range of algorithms initially developed for EO imagery014
to SAR data. The dataset comprises approximately 100K015
pairs of spatially aligned SAR and EO images, collected016
from eight distinct regions covering both urban and ru-017
ral environments. We provide comprehensive evaluations,018
detailed model analyses, and extensive experimental re-019
sults. All code and datasets will be publicly available at020
https://sar2earth.github.io.021

1. Introduction022

Remote sensing images provide the capability to observe023
the Earth on a large scale, making them invaluable for024
analysis in various applications such as transportation [2],025
defense [38], natural resource management [10], disaster026
response [1], and environmental monitoring. However,027
the vast amount of data generated poses significant chal-028
lenges for manual analysis due to the time and expertise re-029
quired. The advent of data-driven models [9, 18, 30] has en-030
abled more efficient and effective analysis of these images.031
Electro-optical (EO) imagery has been the primary modal-032
ity for remote sensing applications due to its intuitive repre-033
sentation of the Earth. However, EO imagery has significant034
limitations: it cannot penetrate cloud cover and is unable035
to capture images at night, restricting its utility in many036
scenarios [16, 26]. For instance, during natural disasters037

like floods—which are often accompanied by heavy cloud 038
cover—EO imagery becomes ineffective for timely disaster 039
assessment and response. To overcome these limitations, 040
synthetic aperture radar (SAR) imagery is employed. SAR 041
sensors can operate independently of daylight and weather 042
conditions, providing consistent imaging capabilities. How- 043
ever, SAR images suffer from speckle noise due to the co- 044
herent nature of radar signal processing, which introduces 045
granular interference patterns. This speckle noise makes 046
SAR images challenging to interpret [28, 43], especially for 047
non-experts, and complicates the application of algorithms 048
developed for EO imagery. To bridge this gap, SAR-to-EO 049
translation methods [6, 11, 29, 40] have been proposed, 050
aiming to translate SAR images into EO-like images that 051
are more accessible for analysis using existing EO-based 052
algorithms. 053

Despite these efforts, there has been a lack of compre- 054
hensive analysis of these methods, and they often remain 055
isolated applications without standardized benchmarks. Ex- 056
isting SAR and EO multimodal datasets [15, 17, 24, 27, 33] 057
have several limitations. They frequently have limited ge- 058
ographic diversity and data quantity, restricting the gen- 059
eralizability of model performance across regions. Ad- 060
ditionally, many of these datasets feature short temporal 061
intervals—often just one day—failing to represent real- 062
world conditions, including significant temporal discrepan- 063
cies caused by satellite revisit cycles, cloud cover, or night- 064
time acquisition. A detailed comparison of existing datasets 065
is provided in the supplementary material. 066

To overcome these challenges, we introduce SAR2Earth, 067
a comprehensive benchmark dataset designed specifically 068
for SAR-to-EO translation. SAR2Earth comprises spatially 069
aligned SAR and EO image pairs collected from 8 distinct 070
regions, covering both urban and rural environments. The 071
dataset also incorporates realistic temporal differences be- 072
tween SAR and EO image acquisitions, better reflecting 073
real-world remote sensing scenarios. All codes and datasets 074
are being made publicly available to support future research 075
in this domain. 076
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Figure 1. Geographic overview of the SAR2Earth dataset. This dataset highlights the diversity of geographic locations and environments,
covering eight distinct regions—including Chicago, San Francisco, Charleston, Savannah, Paris, Bengbu, Weifang, and Sittwe—spanning
both urban and rural areas across North America, Europe, and Asia. (As seen on the right, the consecutive columns represent SAR imagery,
EO imagery, and OSM-based label maps.)

2. Related Work077

2.1. Applications of SAR Imagery078

Numerous applications leverage SAR imagery across vari-079
ous domains. For instance, [14] collected 100K SAR im-080
ages for object detection, while [22] used aligned SAR081
and EO images for disaster analysis like floods. Addition-082
ally, [16] classified vehicles within SAR imagery. Another083
key application is cloud removal from EO images using084
SAR data. Studies such as [25, 36, 37] introduced datasets085
combining multi-temporal EO and SAR imagery to address086
cloud cover. However, this approach fails at night when EO087
data is unavailable and struggles with dynamic objects due088
to temporal discrepancies. The SAR-to-EO translation task089
has emerged to address these issues by directly generating090
EO-like images from SAR data. Despite its benefits, SAR091
data collection remains expensive and technically challeng-092
ing due to speckle noise and sensor complexity, limiting093
widespread availability of standardized datasets.094

2.2. SAR-to-EO Translations095

To overcome the limitations of SAR datasets, SAR-to-EO096
translation techniques have been proposed. For instance,097
[15] introduced a method to utilize SAR images by trans-098
lating them into EO images. To enhance the performance099
of SAR-to-EO translation, models such as Pix2Pix [7],100
Pix2PixHD [32], and CycleGAN [44] have been employed.101
Recently, diffusion-based methods [13, 23] have been ex-102
plored to enhance translation quality and applied to tasks103
like Amazon deforestation monitoring [3]. Despite the nu-104
merous SAR-to-EO translation methods proposed, there has105

not been a rigorous comparison among paired methods, 106
unpaired methods, and diffusion-based approaches. Fur- 107
thermore, because the pre-processing and post-processing 108
pipelines differ across studies, accurate analysis and bench- 109
marking have been lacking. 110

2.3. Remote sensing applications 111

Recent advancements in large foundation models and gen- 112
eralization models have brought significant benefits to satel- 113
lite image analysis. GeoChat [9] has demonstrated an 114
EO (Electro-Optical) image-based language model by ef- 115
ficiently fine-tuning large language models. Segment Any- 116
thing [8] introduced a segmentation model that can be uti- 117
lized across any domain by training on billion-scale general 118
vision datasets. These technologies have also been applied 119
in the remote sensing domain, being used in various tasks 120
such as change detection [4, 18] and building segmenta- 121
tion [19]. However, as revealed in the study [39], models 122
based on Segment Anything and large language models like 123
GeoChat do not perform effectively on SAR images due to 124
their training on EO images, which have significantly dif- 125
ferent characteristics. Consequently, in the context of SAR 126
imagery, the benefits of advancements in large foundation 127
models and generalization models have not been fully har- 128
nessed. 129

3. SAR2Earth Dataset 130

In this section, we provide a detailed description of the 131
SAR2Earth dataset. The SAR2Earth dataset has the follow- 132
ing key characteristics: 133

• Global Data Collection for Generalization: To evaluate 134
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Figure 2. Statistics for the topological distribution and temporal differences in the dataset. (a) Distribution of urban and rural areas by
topological elements. (b) Time differences between SAR and EO image captures across regions, indicating the satellite revisit cycles.

generalization performance, the SAR2Earth dataset in-135
cludes data collected from 8 regions across North Amer-136
ica, Europe, and Asia.137

• High Resolution Imagery: The dataset consists of high138
resolution images, ranging from 0.15m to 0.6m, offering139
a diverse mix of spatial resolutions.140

• Consideration of Temporal Shifts: The dataset accounts141
for a variety of temporal shifts, ranging from as close as142
a 1-month difference to as far as a 5-year gap, providing143
a wide spectrum of temporal scenarios.144

• Structural Diversity: To address structural shifts, the145
data is divided into urban and rural categories. The classi-146
fication is based on the ratio of buildings, amenities, and147
other structural elements, ensuring a balanced representa-148
tion of diverse environments.149

For sample images and detailed statistics of the dataset,150
please refer to Figure 1 and Figure 2.151

3.1. Dataset design152

Data acquisition SAR imagery is sourced from the153
Capella Space Open Data Program, with a resolution rang-154
ing from 0.3 to 0.6 meters per pixel. Its capability to capture155
detailed information irrespective of weather, cloud cover, or156
lighting makes it reliable for continuous monitoring.157

EO imagery is obtained from Google Earth, with resolu-158
tions between 0.15 and 0.6 meters per pixel.159

SAR Pre-processing SAR images require significant pre-160
processing to address noise (such as speckle), geometric161
distortions, and the wide dynamic range of pixel values.162
One of the critical steps is translating the raw amplitude or163
intensity values into decibels (dB), which enhances inter-164
pretability by compressing the dynamic range and provid-165
ing a logarithmic representation suitable for further analy-166
sis. The conversion to decibels is performed using the fol-167
lowing equation:168

σ0
dB = 10 log10(S ·D2) (1)169

where σ0
dB is the backscatter coefficient in decibels, S is a 170

scaling factor specific to the sensor, and D is the calibrated 171
digital number (DN) values in geocoded format. Note that 172
D is typically the square root of the intensity value, as SAR 173
data is often represented in amplitude. 174

This conversion provides several benefits: it compresses 175
the dynamic range for enhanced visualization, reduces the 176
influence of extreme pixel values, and improves overall data 177
interpretability, which are crucial for subsequent analysis 178
steps. 179

Co-registration of SAR and EO A significant chal- 180
lenge in SAR-to-EO translation is achieving precise co- 181
registration between the two modalities due to inherent 182
differences in spatial resolution and coordinate systems, 183
and while accurate spatial alignment improves feature cor- 184
respondence, perfect matching remains elusive. To ad- 185
dress these challenges, we experimented with various co- 186
registration methods, including state-of-the-art data-driven 187
methods, as detailed in the supplementary material. While 188
such methods showed promising results on local regions, 189
they were insufficient to guarantee consistent alignment 190
across the entire dataset. 191

Therefore, to ensure global consistency and broad ap- 192
plicability of our dataset, we adopted a reprojection-based 193
method using the World Geodetic System 1984 (WGS84), 194
the most widely adopted geodetic reference framework in 195
remote sensing and geospatial applications. This reprojec- 196
tion guarantees spatial consistency across all patches, en- 197
abling accurate overlay and comprehensive analysis of both 198
SAR and EO data. 199

The co-registration process is performed using QGIS, a 200
robust geographic information system platform. By lever- 201
aging the longitude and latitude coordinates inherent to 202
WGS84, we executed image spatial alignment to achieve 203
pixel-level precision. This procedure facilitated the precise 204
synchronization of spatial features across SAR and EO im- 205
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(a) SAR (b) Denoised SAR (c) Synthetic EO (d) Refined EO (e) EO

Figure 3. The results of SAR-to-EO translation at each step. (a) the original SAR image, (b) the denoised SAR, (c) the SAR-to-EO
translation result, (d) the output from the refinement model, and (e) the EO image.

agery, thus enabling more effective translation and interpre-206
tation between the two data sources.207

3.2. Dataset Statistics208

To obtain detailed topological information, we utilized209
OpenStreetMap (OSM), classifying a total of 25 distinct210
land cover classes across all regions. The entire dataset211
covers a combined area of 1444.91 km2. The dataset com-212
prises a total of 99,998 images, each sized 256x256, gen-213
erated with a stride of 128. For each region, the dataset is214
divided into training, validation, and test sets in a 7:1:2 ra-215
tio, as detailed further in the supplementary material. The216
regions are classified as urban if residential areas cover at217
least 25% of the total area. Additionally, if non-residential218
human-made areas, such as commercial, industrial, or retail219
spaces, occupy at least 5% of the total area, the region is220
also categorized as urban [5, 21, 30].221

As shown in Figure 2-(a), this classification provides an222
overview of the topological distribution of urban and ru-223
ral areas. Specifically, rural areas predominantly consist of224
natural landscapes, such as vegetation and bodies of water,225
while urban areas are marked by the presence of human-226
made structures, including residential, commercial, and in-227
dustrial buildings.228

To assess the temporal diversity of our dataset, Figure 2-229
(b) illustrates the temporal differences between SAR and230
EO imagery acquisition across various regions. These tem-231
poral gaps vary significantly between regions, offering a232
wide range of temporal shifts. To the best of our knowledge,233
this makes our dataset the first to incorporate such diverse234
temporal differences across a broad set of geographic loca-235
tions. Acquiring temporally aligned SAR-EO pairs without236
time discrepancies is particularly challenging in real-world237
settings, making this diversity crucial for practical applica-238
tions.239

4. SAR2EO Pipelines240

In this section, we provide a detailed explanation of our pro-241
posed SAR-to-EO pipeline. The SAR-to-EO baseline con-242
sists of three main stages: first, a de-noising step to remove243

the speckle noise inherent in SAR images, as shown in Fig- 244
ure 3-(b); second, an image-to-image translation module 245
that translates SAR images into EO images, as illustrated in 246
Figure 3-(c); and finally, a post-processing structure that re- 247
fines the generated images for enhanced quality, as demon- 248
strated in Figure 3-(d). 249

4.1. De-noising 250

SAR images inherently contain speckle noise due to the in- 251
terference of radar signals interacting with multiple scatter- 252
ers. This noise has a multiplicative nature and is closely 253
linked to the signal itself. Since speckle noise strongly cor- 254
relates with neighboring pixels, conventional methods that 255
assume noise and signal independence are less effective in 256
removing it. 257

To address this, we adopt a blind-spot method, which 258
predicts the clean value of a pixel based on its surround- 259
ing pixels rather than the noisy pixel itself. Given the high 260
correlation of speckle noise among neighboring pixels in 261
SAR images, the blind-spot method is particularly effective 262
at distinguishing and removing noise. 263

This de-noising process enhances image quality for 264
SAR-to-EO translation tasks. In our work, we compare two 265
blind-spot-based de-noising methods: [12] and [42]. 266

4.2. Image to image translation 267

SAR-to-EO image translation poses a complex challenge, 268
requiring the handling of both paired and unpaired settings. 269
Due to changes in ground conditions over time, achieving 270
perfect temporal alignment between SAR and EO images is 271
nearly impossible. For instance, while buildings and fixed 272
structures remain relatively constant, elements like vegeta- 273
tion, moving objects, and lighting conditions vary, compli- 274
cating precise registration. 275

Considering these factors, SAR-to-EO translation must 276
effectively address both spatial alignment and temporal 277
misalignment. In this paper, we compare paired and un- 278
paired image-to-image translation approaches. Addition- 279
ally, we propose a partially-paired image-to-image transla- 280
tion method by incorporating objective functions, such as 281
MSE or MAE loss, into the unpaired setting. Given a SAR 282
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Model Type MAE ↓ MSE ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
Pix2Pix [7] pair 0.172 0.051 13.818 0.085 173.751 0.569

Pix2PixHD [32] pair 0.151 0.041 15.319 0.162 155.073 0.564
BBDM [13] pair 0.161 0.047 14.772 0.163 123.051 0.477

CycleGAN [44] unpair 0.244 0.062 12.529 0.101 142.532 0.590
CUT [20] unpair 0.236 0.086 11.172 0.094 144.312 0.592

StegoGAN [34] unpair 0.214 0.073 12.041 0.152 158.930 0.595

CycleGAN [44] pair+unpair 0.189 0.063 13.592 0.109 142.532 0.540
CUT [20] pair+unpair 0.132 0.039 16.500 0.199 140.227 0.350

StegoGAN [34] pair+unpair 0.197 0.059 14.213 0.161 166.325 0.593

Table 1. Results for image-to-image translation baselines on the test set of SAR2Earth. We break down results by training data type: paired
training data and unpaired training data. All models are trained on the train set of SAR2Earth.

image Isar and an EO image Ieo, the modified loss function283
is defined as:284

Ltotal(G,Deo, Isar, Ieo) =αLd(Deo, Ieo, G(Isar))

+ βLg(G, Isar)

+ γLmse(G(Isar), Ieo)

(2)285

Here, Ld is the discriminator loss, responsible for distin-286
guishing real EO images Ieo from generated EO images287
G(Isar). The discriminator Deo learns this differentiation.288
Lg is the generator loss, applied to various unpaired image-289
to-image translation models such as CycleGAN [44] and290
CUT [20].291

The term Lmse represents the MSE or MAE loss, which292
aims to minimize the reconstruction error between G(Isar)293
and Ieo. By leveraging partially-paired data, this loss en-294
courages the generator to produce EO images that closely295
resemble the real EO data, thereby reducing the differences296
between the generated and real images.297

The terms α, β and γ are all hyperparameters, and in all298
of our experiments, we set α and β to 1, and γ to 0.5.299

4.3. Post-processing300

After performing SAR-to-EO translation, the generated im-301
ages may exhibit blurring or artifacts, especially when the302
data distribution differs from what is seen during training.303
However, models such as GeoChat or SAM often struggle to304
perform well on blurred or artifact-affected objects. There-305
fore, a refinement process is necessary to eliminate these306
artifacts.307

We adopt Restormer as our refinement model. Let D(.)308
represent the SAR-to-EO translation model, G(.) the gener-309
ator, and R(.) the refinement network. The objective of the310
refinement step is defined as follows:311

Lrefinement = Lmae(R(G(D(Isar))), Ieo) (3)312

Model De-noising MSE ↓ FID ↓

CUT
(pair+unpair)

MedianBlur 0.037 140.530
GaussianBlur 0.032 140.172

Noise2Noise [12] 0.029 144.230
MM-BSN [42] 0.022 136.684

Table 2. Ablation study on de-noising preprocessing methods.

5. Experiments 313

In this section, we validate the SAR2Earth dataset using 314
various image-to-image translation methods and experi- 315
ment with different preprocessing and postprocessing tech- 316
niques. 317

5.1. Implementation details 318

Baselines We selected Pix2Pix [7], Pix2PixHD [32], and 319
the diffusion-based BBDM [13] as paired baselines for 320
image-to-image translation. Additionally, we chose Cycle- 321
GAN [44], CUT [20], and StegoGAN [34] as unpaired base- 322
lines. All hyperparameters strictly followed the default set- 323
tings of the respective methods 1234. We refer to the output 324
of SAR-to-EO models as Synthetic EO (SynEO), and the 325
approach combining paired and unpaired methods is termed 326
the hybrid method. 327

Experiments settings Table 2 presents results obtained 328
without applying de-noising or post-processing, providing a 329
baseline for comparison. From Table 3 onward, de-noising 330
and post-processing steps are consistently applied, utilizing 331
Hybrid CUT to enhance model performance. This progres- 332
sion demonstrates the impact of these additional steps, en- 333
suring clarity in the experimental setup and the effects of 334
de-noising and post-processing on SAR-to-EO translation 335
performance. 336

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
2https://github.com/taesungp/contrastive-unpaired-translation
3https://github.com/xuekt98/BBDM
4https://github.com/sian-wusidi/StegoGAN
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Experiment Setting Region MAE ↓ MSE ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓

In-Domain
(Single region)

Charleston-U 0.108 0.030 17.235 0.230 130.582 0.320
Chicago 0.112 0.033 16.983 0.225 132.467 0.327

Paris 0.105 0.029 17.301 0.235 128.430 0.315
Savannah 0.115 0.034 16.875 0.222 135.098 0.330
Sittwe-U 0.109 0.031 17.102 0.229 131.744 0.322
Bengbu 0.098 0.025 18.512 0.240 120.320 0.300

Charleston-R 0.101 0.027 18.301 0.238 123.982 0.308
San Francisco 0.097 0.024 18.734 0.242 118.567 0.295

Sittwe-R 0.099 0.026 18.589 0.239 121.765 0.305
Weifang 0.096 0.023 18.852 0.245 117.231 0.292

In-Domain Urban→Urban 0.106 0.028 17.478 0.240 125.345 0.310
Rural→Rural 0.097 0.024 18.715 0.241 115.984 0.298

Cross-Domain Urban→Rural 0.135 0.043 16.253 0.210 145.450 0.360
Rural→Urban 0.132 0.041 16.438 0.218 143.890 0.355

Table 3. Results for regional test set when trained with 10 regions or the entire urban (Charleston-U, Chicago, Paris, Savannah, Sittwe-U)
and rural regions (Bengbu, Charleston-R, San Francisco, Sittwe-R, Weifang).

We use the official codes for OpenEarthMap [35] and337
GeoChat, where the UnetFormer [31] model are used for338
land cover segmentation, and the 7B model are used for339
GeoChat. For further details on the experimental setup of340
land cover segmentation, please refer to supplementary ma-341
terial. We strictly followed all the hyperparameters and set-342
tings from the original code.343

Evaluation metrics To evaluate the performance of the344
SAR-to-EO image translation task, we use MAE (Mean345
Absolute Error), MSE (Mean Squared Error), PSNR (Peak346
Signal-to-Noise Ratio), and SSIM (Structural Similarity In-347
dex Measure) to measure pixel-level accuracy and structural348
similarity. These metrics capture the absolute and squared349
differences between the generated and real EO images, as-350
sess image quality in terms of noise (PSNR), and ensure351
structural consistency (SSIM), which are crucial for main-352
taining fidelity in pixel values and structures in SAR-to-EO353
translation.354

Additionally, we use FID (Fréchet Inception Distance)355
and LPIPS (Learned Perceptual Image Patch Similarity) to356
evaluate the perceptual quality and realism of the generated357
EO images. FID assesses the similarity in feature distri-358
butions between the generated and real EO images, while359
LPIPS focuses on perceptual differences based on deep fea-360
ture representations, ensuring that the generated images vi-361
sually resemble real EO data.362

5.2. Comparison of baseline363

Table 1 presents the results of comparing image-to-image364
translation methods on the SAR2Earth dataset. As observed365
in the comparison table, methods under the paired setting366
achieved high accuracy results (MSE, MAE). In contrast,367
methods under the unpaired setting showed lower accuracy368
(MSE, MAE) but attained higher perceptual scores (FID).369

The SAR2Earth task aims to accurately predict the cor- 370
rect EO image rather than simply generate plausible im- 371
ages. Therefore, metrics such as perceptual scores and 372
MSE, MAE are both important. Accordingly, we combined 373
unpaired baselines that achieved high perceptual scores 374
with paired methods that obtained high MSE and MAE per- 375
formance. We conducted experiments by applying Eq. 2 on 376
the paired images using existing unpaired methods such as 377
CycleGAN, CUT, and StegoGAN. 378

Experimental results showed that the hybrid CUT in Ta- 379
ble 1 achieved the highest performance. This is because the 380
SAR2Earth dataset is spatially aligned but temporally un- 381
aligned. As a result, objects like buildings are in a paired 382
setting, while moving objects are in an unpaired setting. 383
Therefore, a baseline that considers both settings achieved 384
the best performance. 385

5.3. Comparison of processing 386

Comparison of de-noising SAR images contain a large 387
amount of speckle noise. This noise appears as granu- 388
lar interference, obscuring important features and textures 389
in the image. It complicates the feature extraction pro- 390
cess in data-driven models by introducing high-frequency 391
artifacts, making it challenging to learn accurate mappings 392
between SAR and EO images. To address this issue, de- 393
noising methods have been applied, but because elements in 394
SAR images that appear as noise can actually be important 395
signals, de-noising methods need to be applied carefully. 396
Table 2 shows the performance variations of SAR-to-EO 397
translation according to different de-noising methods. 398

The results in Table 2 demonstrate that as the de-noising 399
methods become more advanced, performance improves. 400
These experimental results indicate that in the SAR-to- 401
EO translation task, employing more advanced de-noising 402
methods positively impacts performance. 403
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Figure 4. Qualitative comparison of various image-to-image translation methods for SAR-to-EO translation in rural and urban cases.

Comparison of refinement We compared the perfor-404
mance of SAR-to-EO translation with respect to post-405
processing. For post-processing, we used [41], and during406
training, we aimed for refinement by adding random defor-407
mations (affine transforms, random Gaussian noise) to the408
EO images. After that, we applied a refinement model to409
the images translated from SAR-to-EO. We observed that410
the FID score decreased from 136 to 128, indicating an im-411
provement in perceptual quality, while the other scores did412
not change significantly. As observed in the results, we con-413
firmed that the performance improved slightly. Figure 3 il-414
lustrates (a) the original SAR, (b) the denoised SAR, (c) the415
synthetic EO, (d) the refined EO, and (e) the ground truth416
EO. As shown in Figure 3, we confirmed that the artifacts417
present in (c) disappeared in (d) through refinement. These418
experimental results indicate the cause of the performance419
improvement due to refinement.420

5.4. Model Generalization evaluation421

The characteristics of SAR images vary significantly by re-422
gion due to radar backscatter, making it difficult to distin-423
guish between surfaces with similar structures, like oceans424
and flat areas. As a result, domain gaps in SAR data are425
often larger than in EO imagery. To evaluate this, we con-426
duct in-domain experiments by training and testing models427
within the same region.428

Urban areas, with their complex structures, present429
larger domain gaps compared to rural areas, which tend to430
have more uniform natural features. As shown in Table 3,431
rural regions generally outperform urban areas in in-domain432
evaluations across all metrics. Notably, training on com-433
bined urban regions often yields better results than training434
on a single region, likely due to increased data diversity.435

However, for rural regions, training on individual regions 436
produces better results, suggesting that localized models 437
perform better for natural features. 438

In cross-domain experiments (Urban → Rural and Ru- 439
ral → Urban), we observe significant performance drops, 440
emphasizing the large differences between these domains. 441
Thus, for practical applications, collecting and training data 442
tailored to specific regional characteristics is more benefi- 443
cial than simply expanding the dataset without considering 444
regional uniqueness. 445

5.5. Qualitative results 446

Figure 4 qualitatively compares the results of SAR-to-EO 447
translation across different baselines. As shown in the fig- 448
ure, CUT (hybrid) produces the most visually plausible re- 449
sults. Specifically, in the second row, indicated by the green 450
dotted box, the SAR image does not contain an airplane sig- 451
nal, and all baselines succeed to generate an airplane in their 452
corresponding SAR-to-EO translation outputs. This exper- 453
iment demonstrates that, despite the temporally unaligned 454
nature of the SAR-to-EO setting, combining paired and un- 455
paired training approaches effectively mitigates this chal- 456
lenge. 457

In the rural example (third row), all baselines produce 458
more plausible images compared to their urban counter- 459
parts. However, as highlighted by the red dotted line, fully 460
paired methods like pix2pix and pix2pixHD tend to distort 461
features. This is due to the differing imaging angles be- 462
tween SAR and EO data, where SAR images are often cap- 463
tured from a perspective distinct from that of EO imagery. 464
As a result, the paired models attempt to generate EO-like 465
angles, even for features not present in the original SAR 466
image, creating non-existent structures in the SynEO out- 467
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(b) Synthetic EO Image

User : Where is the biggest building located 
and what is their type? 

(c) EO Image(a) SAR Image

GeoChat : The biggest building is located at 
{<1><76><17><92>|<90>}. It is a residential 
building.

User : Where is the biggest building located 
and what is their type? 

User : Where is the biggest building located 
and what is their type? 

GeoChat : The biggest building is located at 
{<78><85><86><93>|<90>}. It is a residential 
building.

GeoChat : The biggest building is located at 
{<0><70><24><90>|<90>}. It is a residential 
building.

Figure 5. Comparison of visual grounding tasks using SAR, EO, and SynEO.

put. In contrast, baselines that combine paired and unpaired468
approaches do not exhibit this distortion tendency, main-469
taining consistency with the original SAR imagery. These470
results suggest that if the goal is to generate EO-like an-471
gles from SAR data, a paired setting is optimal. However,472
if the aim is to faithfully replicate the appearance of SAR473
imagery, a combined paired and unpaired training approach474
is more effective.475

5.6. Application476

GeoChat Figure 5 illustrates the results of testing SAR477
images, SynEO images obtained through SAR-to-EO trans-478
lation, and actual EO images using the GeoChat large lan-479
guage model (LLM). As shown in the figure, when a SAR480
image is input into GeoChat, the responses from the model481
contain entirely incorrect content. This indicates a fail-482
ure to interpret the SAR data accurately, primarily because483
SAR images are excessively noisy and differ significantly484
from the EO or RGB images on which LLMs are predomi-485
nantly trained. In contrast, when the SynEO and EO images486
are provided as input, GeoChat generates correct answers,487
demonstrating its ability to understand and analyze these488
images effectively.489

Land Cover Segmentation As shown in Figure 6, the490
land cover segmentation results show that SynEO images491
lead to higher accuracy than SAR images, particularly for492
artificial classes such as buildings and roads. This indicates493
that using SynEO as input produces outputs more similar to494
those from EO images, compared to directly using SAR im-495
ages. Since most existing land cover segmentation models496
are trained on EO images, applying them directly to SAR497
data often results in suboptimal performance. Furthermore,498
our results highlight the potential of leveraging SAR-to-EO499
translation to expand the applicability of EO-trained models500

0.13120.0208 0.1350

SAR Synthetic EO EO GT

Figure 6. Inference results of SAR, SynEO, and EO images using
UnerFormer trained on grayscale OpenEarthMap. The bottom-
right corner of each prediction shows the mIoU score.

to SAR data, enabling land cover segmentation across di- 501
verse classes despite the inherent differences between SAR 502
and EO imagery. 503

6. Conclusion 504

In this paper, we present SAR2Earth, a public benchmark 505
dataset for SAR-to-EO translation designed to support di- 506
verse remote sensing applications. We evaluate SAR2Earth 507
using state-of-the-art image-to-image translation models, 508
provide benchmark results, and perform ablation studies 509
on data pre-processing and model architecture. Addition- 510
ally, experiments on remote sensing applications such as 511
GeoChat and Land Cover Segmentation demonstrate the 512
potential of SAR-to-EO translation in enhancing data ac- 513
cessibility and utility. Our dataset and code are publicly 514
available to encourage future research in applications such 515
as disaster response and AI for social good. 516
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