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Abstract

Electro-optical (EO) images are crucial for a wide range of
remote sensing applications. However, EO imagery has in-
herent limitations, including an inability to penetrate cloud
cover or capture nighttime images. Synthetic Aperture
Radar (SAR) images address these limitations by provid-
ing consistent imaging capabilities regardless of weather
or lighting conditions. Nevertheless, SAR images are af-
fected by speckle noise, which complicates analysis and lim-
its the direct applicability of EO-based algorithms. To ad-
dress these challenges, we introduce SAR2Earth, a bench-
mark dataset specifically designed for SAR-to-EO transla-
tion. By translating SAR images into EO-like represen-
tations, SAR2Earth enables the application of the exten-
sive range of algorithms initially developed for EO imagery
to SAR data. The dataset comprises approximately 100K
pairs of spatially aligned SAR and EO images, collected
from eight distinct regions covering both urban and ru-
ral environments. We provide comprehensive evaluations,
detailed model analyses, and extensive experimental re-
sults. All code and datasets will be publicly available at
https://sarZ2earth.github. io.

1. Introduction

Remote sensing images provide the capability to observe
the Earth on a large scale, making them invaluable for
analysis in various applications such as transportation [2],
defense [38], natural resource management [10], disaster
response [1], and environmental monitoring. However,
the vast amount of data generated poses significant chal-
lenges for manual analysis due to the time and expertise re-
quired. The advent of data-driven models [9, 18, 30] has en-
abled more efficient and effective analysis of these images.
Electro-optical (EO) imagery has been the primary modal-
ity for remote sensing applications due to its intuitive repre-
sentation of the Earth. However, EO imagery has significant
limitations: it cannot penetrate cloud cover and is unable
to capture images at night, restricting its utility in many
scenarios [16, 26]. For instance, during natural disasters

like floods—which are often accompanied by heavy cloud
cover—EO imagery becomes ineffective for timely disaster
assessment and response. To overcome these limitations,
synthetic aperture radar (SAR) imagery is employed. SAR
sensors can operate independently of daylight and weather
conditions, providing consistent imaging capabilities. How-
ever, SAR images suffer from speckle noise due to the co-
herent nature of radar signal processing, which introduces
granular interference patterns. This speckle noise makes
SAR images challenging to interpret [28, 43], especially for
non-experts, and complicates the application of algorithms
developed for EO imagery. To bridge this gap, SAR-to-EO
translation methods [6, 11, 29, 40] have been proposed,
aiming to translate SAR images into EO-like images that
are more accessible for analysis using existing EO-based
algorithms.

Despite these efforts, there has been a lack of compre-
hensive analysis of these methods, and they often remain
isolated applications without standardized benchmarks. Ex-
isting SAR and EO multimodal datasets [15, 17, 24, 27, 33]
have several limitations. They frequently have limited ge-
ographic diversity and data quantity, restricting the gen-
eralizability of model performance across regions. Ad-
ditionally, many of these datasets feature short temporal
intervals—often just one day—failing to represent real-
world conditions, including significant temporal discrepan-
cies caused by satellite revisit cycles, cloud cover, or night-
time acquisition. A detailed comparison of existing datasets
is provided in the supplementary material.

To overcome these challenges, we introduce SAR2Earth,
a comprehensive benchmark dataset designed specifically
for SAR-to-EO translation. SAR2Earth comprises spatially
aligned SAR and EO image pairs collected from 8 distinct
regions, covering both urban and rural environments. The
dataset also incorporates realistic temporal differences be-
tween SAR and EO image acquisitions, better reflecting
real-world remote sensing scenarios. All codes and datasets
are being made publicly available to support future research
in this domain.
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Figure 1. Geographic overview of the SAR2Earth dataset. This dataset highlights the diversity of geographic locations and environments,
covering eight distinct regions—including Chicago, San Francisco, Charleston, Savannah, Paris, Bengbu, Weifang, and Sittwe—spanning
both urban and rural areas across North America, Europe, and Asia. (As seen on the right, the consecutive columns represent SAR imagery,

EO imagery, and OSM-based label maps.)

2. Related Work
2.1. Applications of SAR Imagery

Numerous applications leverage SAR imagery across vari-
ous domains. For instance, [14] collected 100K SAR im-
ages for object detection, while [22] used aligned SAR
and EO images for disaster analysis like floods. Addition-
ally, [16] classified vehicles within SAR imagery. Another
key application is cloud removal from EO images using
SAR data. Studies such as [25, 36, 37] introduced datasets
combining multi-temporal EO and SAR imagery to address
cloud cover. However, this approach fails at night when EO
data is unavailable and struggles with dynamic objects due
to temporal discrepancies. The SAR-to-EO translation task
has emerged to address these issues by directly generating
EO-like images from SAR data. Despite its benefits, SAR
data collection remains expensive and technically challeng-
ing due to speckle noise and sensor complexity, limiting
widespread availability of standardized datasets.

2.2. SAR-to-EO Translations

To overcome the limitations of SAR datasets, SAR-to-EO
translation techniques have been proposed. For instance,
[15] introduced a method to utilize SAR images by trans-
lating them into EO images. To enhance the performance
of SAR-to-EO translation, models such as Pix2Pix [7],
Pix2PixHD [32], and CycleGAN [44] have been employed.
Recently, diffusion-based methods [13, 23] have been ex-
plored to enhance translation quality and applied to tasks
like Amazon deforestation monitoring [3]. Despite the nu-
merous SAR-to-EO translation methods proposed, there has

not been a rigorous comparison among paired methods,
unpaired methods, and diffusion-based approaches. Fur-
thermore, because the pre-processing and post-processing
pipelines differ across studies, accurate analysis and bench-
marking have been lacking.

2.3. Remote sensing applications

Recent advancements in large foundation models and gen-
eralization models have brought significant benefits to satel-
lite image analysis. GeoChat [9] has demonstrated an
EO (Electro-Optical) image-based language model by ef-
ficiently fine-tuning large language models. Segment Any-
thing [8] introduced a segmentation model that can be uti-
lized across any domain by training on billion-scale general
vision datasets. These technologies have also been applied
in the remote sensing domain, being used in various tasks
such as change detection [4, 18] and building segmenta-
tion [19]. However, as revealed in the study [39], models
based on Segment Anything and large language models like
GeoChat do not perform effectively on SAR images due to
their training on EO images, which have significantly dif-
ferent characteristics. Consequently, in the context of SAR
imagery, the benefits of advancements in large foundation
models and generalization models have not been fully har-
nessed.

3. SAR2Earth Dataset

In this section, we provide a detailed description of the
SAR2Earth dataset. The SAR2Earth dataset has the follow-
ing key characteristics:

¢ Global Data Collection for Generalization: To evaluate
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Figure 2. Statistics for the topological distribution and temporal differences in the dataset. (a) Distribution of urban and rural areas by
topological elements. (b) Time differences between SAR and EO image captures across regions, indicating the satellite revisit cycles.
135 generalization performance, the SAR2Earth dataset in- where ol is the backscatter coefficient in decibels, S is a 170
136 cludes data collected from 8 regions across North Amer- scaling factor specific to the sensor, and D is the calibrated 171
137 ica, Europe, and Asia. digital number (DN) values in geocoded format. Note that 172
138 * High Resolution Imagery: The dataset consists of high D is typically the square root of the intensity value, as SAR 173
139 resolution images, ranging from 0.15m to 0.6m, offering data is often represented in amplitude. 174
140 a diverse mix of spatial resolutions. This conversion provides several benefits: it compresses 175
141 * Consideration of Temporal Shifts: The dataset accounts the dynamic range for enhanced visualization, reduces the 176
142 for a variety of temporal shifts, ranging from as close as influence of extreme pixel values, and improves overall data 177
143 a 1-month difference to as far as a 5-year gap, providing interpretability, which are crucial for subsequent analysis 178
144 a wide spectrum of temporal scenarios. steps. 179
145 * Structural Diversity: To address structural shifts, the
146 data is divided into urban and rural categories. The classi-

147 fication is based on the ratio of buildings, amenities, and Co-registration of SAR and EO A significant chal- 180
148 other structural elements, ensuring a balanced representa- lenge in SAR-to-EO translation is achieving precise co- 181
149 tion of diverse environments. registration between the two modalities due to inherent 182
150 For sample images and detailed statistics of the dataset, differences in spatial resolution and coordinate systems, 183
151 please refer to Figure 1 and Figure 2. and while accurate spatial alignment improves feature cor- 184
respondence, perfect matching remains elusive. To ad- 185
152 3.1. Dataset design dress these challenges, we experimented with various co- 186
153 Data acquisition SAR imagery is sourced from the registration meth.ods,.including state-of-the-art data—drivlen 187
154 Capella Space Open Data Program, with a resolution rang- methods, as detailed in the supplementary material. While 188
155 ing from 0.3 to 0.6 meters per pixel. Its capability to capture such methods showed promising results on local regions, 189
156 detailed information irrespective of weather, cloud cover, or they were in.sufﬁcient to guarantee consistent alignment 190
157 lighting makes it reliable for continuous monitoring. across the entire dataset. 191
158 EO imagery is obtained from Google Earth, with resolu- Therefore, to ensure global consistency and broad ap- 192
159 tions between 0.15 and 0.6 meters per pixel. plicability of our dataset, we adopted a reprojection-based 193
method using the World Geodetic System 1984 (WGS84), 194
160 SAR Pre-processing SAR images require significant pre- the most Wiqely adopted ggodetic ?efe.rence fra.meworlf in 195
161 processing to address noise (such as speckle), geometric r.emote sensing and geospatlgl applications. This reprojec- 196
162 distortions, and the wide dynamic range of pixel values. tlor_l guarantees spatial consistency across all p at.ches, en- 197
163 One of the critical steps is translating the raw amplitude or abling accurate overlay and comprehensive analysis of both 198
164 intensity values into decibels (dB), which enhances inter- SAR and EO data. L
165 pretability by compressing the dynamic range and provid- The co-registration process is performed using QGIS, a 200
166 ing a logarithmic representation suitable for further analy- robust geographic information system platform. By lever- 201
167 sis. The conversion to decibels is performed using the fol- aging the longitude and latitude coordinates inherent to 202
168 lowing equation: WGS84, we executed image spatial alignment to achieve 203
pixel-level precision. This procedure facilitated the precise 204
169 0% = 10log,,(S - D?) (1) synchronization of spatial features across SAR and EO im- 205
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(a) SAR

(b) Denoised SAR

(c) Synthetic EO

(d) Refined EO (e) EO

Figure 3. The results of SAR-to-EO translation at each step. (a) the original SAR image, (b) the denoised SAR, (c) the SAR-to-EO
translation result, (d) the output from the refinement model, and (e) the EO image.

agery, thus enabling more effective translation and interpre-
tation between the two data sources.

3.2. Dataset Statistics

To obtain detailed topological information, we utilized
OpenStreetMap (OSM), classifying a total of 25 distinct
land cover classes across all regions. The entire dataset
covers a combined area of 1444.91 km?. The dataset com-
prises a total of 99,998 images, each sized 256x256, gen-
erated with a stride of 128. For each region, the dataset is
divided into training, validation, and test sets in a 7:1:2 ra-
tio, as detailed further in the supplementary material. The
regions are classified as urban if residential areas cover at
least 25% of the total area. Additionally, if non-residential
human-made areas, such as commercial, industrial, or retail
spaces, occupy at least 5% of the total area, the region is
also categorized as urban [5, 21, 30].

As shown in Figure 2-(a), this classification provides an
overview of the topological distribution of urban and ru-
ral areas. Specifically, rural areas predominantly consist of
natural landscapes, such as vegetation and bodies of water,
while urban areas are marked by the presence of human-
made structures, including residential, commercial, and in-
dustrial buildings.

To assess the temporal diversity of our dataset, Figure 2-
(b) illustrates the temporal differences between SAR and
EO imagery acquisition across various regions. These tem-
poral gaps vary significantly between regions, offering a
wide range of temporal shifts. To the best of our knowledge,
this makes our dataset the first to incorporate such diverse
temporal differences across a broad set of geographic loca-
tions. Acquiring temporally aligned SAR-EO pairs without
time discrepancies is particularly challenging in real-world
settings, making this diversity crucial for practical applica-
tions.

4. SAR2EQ Pipelines

In this section, we provide a detailed explanation of our pro-
posed SAR-to-EO pipeline. The SAR-to-EO baseline con-
sists of three main stages: first, a de-noising step to remove

the speckle noise inherent in SAR images, as shown in Fig-
ure 3-(b); second, an image-to-image translation module
that translates SAR images into EO images, as illustrated in
Figure 3-(c); and finally, a post-processing structure that re-
fines the generated images for enhanced quality, as demon-
strated in Figure 3-(d).

4.1. De-noising

SAR images inherently contain speckle noise due to the in-
terference of radar signals interacting with multiple scatter-
ers. This noise has a multiplicative nature and is closely
linked to the signal itself. Since speckle noise strongly cor-
relates with neighboring pixels, conventional methods that
assume noise and signal independence are less effective in
removing it.

To address this, we adopt a blind-spot method, which
predicts the clean value of a pixel based on its surround-
ing pixels rather than the noisy pixel itself. Given the high
correlation of speckle noise among neighboring pixels in
SAR images, the blind-spot method is particularly effective
at distinguishing and removing noise.

This de-noising process enhances image quality for
SAR-to-EO translation tasks. In our work, we compare two
blind-spot-based de-noising methods: [12] and [42].

4.2. Image to image translation

SAR-to-EO image translation poses a complex challenge,
requiring the handling of both paired and unpaired settings.
Due to changes in ground conditions over time, achieving
perfect temporal alignment between SAR and EO images is
nearly impossible. For instance, while buildings and fixed
structures remain relatively constant, elements like vegeta-
tion, moving objects, and lighting conditions vary, compli-
cating precise registration.

Considering these factors, SAR-to-EO translation must
effectively address both spatial alignment and temporal
misalignment. In this paper, we compare paired and un-
paired image-to-image translation approaches. Addition-
ally, we propose a partially-paired image-to-image transla-
tion method by incorporating objective functions, such as
MSE or MAE loss, into the unpaired setting. Given a SAR
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Model Type | MAE| MSE| PSNRT SSIMt FID| LPIPS|

Pix2Pix [7] pair 0.172 0051 13.818 0085 173751  0.569
Pix2PixHD [32] pair 0.151 0041 15319 0162 155073  0.564
BBDM [13] pair 0.161 0047 14772  0.163 123.051 0477
CycleGAN [44] unpair 0244 0062 12529  0.101 142532 0.590
CUT [20] unpair 0236 0086 11.172  0.094 144312  0.592
StegoGAN [34] unpair 0214 0073 12041 0152 158930  0.595
CycleGAN [44] | pair+unpair | 0.189  0.063  13.592  0.109  142.532  0.540
CUT [20] pair+unpair | 0132  0.039  16.500  0.199 140227  0.350
StegoGAN [34] | pair+unpair | 0.197  0.059 14213  0.161 166325  0.593

Table 1. Results for image-to-image translation baselines on the test set of SAR2Earth. We break down results by training data type: paired
training data and unpaired training data. All models are trained on the train set of SAR2Earth.

image I, and an EO image I.,, the modified loss function
is defined as:

Elotal(Gy Dem Isara Ieo) :Oéﬁd(Deo, I€O7 G(Isar>)
+ BLy(G, Iar) (2)
+ ’Yﬁmse(G(Isar)a [eo)

Here, L4 is the discriminator loss, responsible for distin-
guishing real EO images I., from generated EO images
G(Isqr). The discriminator D, learns this differentiation.
L is the generator loss, applied to various unpaired image-
to-image translation models such as CycleGAN [44] and
CUT [20].

The term L, s, represents the MSE or MAE loss, which
aims to minimize the reconstruction error between G (I5q,)
and I.,. By leveraging partially-paired data, this loss en-
courages the generator to produce EO images that closely
resemble the real EO data, thereby reducing the differences
between the generated and real images.

The terms «, 8 and + are all hyperparameters, and in all
of our experiments, we set o and (3 to 1, and 7y to 0.5.

4.3. Post-processing

After performing SAR-to-EO translation, the generated im-
ages may exhibit blurring or artifacts, especially when the
data distribution differs from what is seen during training.
However, models such as GeoChat or SAM often struggle to
perform well on blurred or artifact-affected objects. There-
fore, a refinement process is necessary to eliminate these
artifacts.

We adopt Restormer as our refinement model. Let D(.)
represent the SAR-to-EO translation model, G(.) the gener-
ator, and R(.) the refinement network. The objective of the
refinement step is defined as follows:

ACreﬁnement = £mae(R(G(D(Isar)))7 Ieo) (3)

Model | De-noising | MSE| FID|
MedianBlur 0.037 140.530
CUT GaussianBlur 0.032 140.172
(pair+unpair) | Noise2Noise [12] | 0.029  144.230
MM-BSN [42] 0.022 136.684

Table 2. Ablation study on de-noising preprocessing methods.

5. Experiments

In this section, we validate the SAR2Earth dataset using
various image-to-image translation methods and experi-
ment with different preprocessing and postprocessing tech-
niques.

5.1. Implementation details

Baselines We selected Pix2Pix [7], Pix2PixHD [32], and
the diffusion-based BBDM [13] as paired baselines for
image-to-image translation. Additionally, we chose Cycle-
GAN [44], CUT [20], and StegoGAN [34] as unpaired base-
lines. All hyperparameters strictly followed the default set-
tings of the respective methods '?**. We refer to the output
of SAR-to-EO models as Synthetic EO (SynEQ), and the
approach combining paired and unpaired methods is termed
the hybrid method.

Experiments settings Table 2 presents results obtained
without applying de-noising or post-processing, providing a
baseline for comparison. From Table 3 onward, de-noising
and post-processing steps are consistently applied, utilizing
Hybrid CUT to enhance model performance. This progres-
sion demonstrates the impact of these additional steps, en-
suring clarity in the experimental setup and the effects of
de-noising and post-processing on SAR-to-EO translation
performance.

Uhttps://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
Zhttps://github.com/taesungp/contrastive-unpaired-translation
3https://github.com/xuekt98/BBDM
“https://github.com/sian-wusidi/StegoGAN
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Experiment Setting ‘ Region ‘ MAE| MSE| PSNR{ SSIM{ FID| LPIPS)|

Charleston-U 0.108 0.030 17.235 0.230 130.582 0.320

Chicago 0.112 0.033 16.983 0.225 132.467 0.327

Paris 0.105 0.029 17.301 0.235  128.430 0.315

Savannah 0.115 0.034 16.875 0.222 135.098 0.330

In-Domain Sittwe-U 0.109 0.031 17.102 0.229 131.744 0.322

(Single region) Bengbu 0.098 0.025 18.512 0.240 120.320 0.300

Charleston-R 0.101 0.027 18.301 0.238 123.982 0.308

San Francisco 0.097 0.024 18.734 0.242 118.567 0.295

Sittwe-R 0.099 0.026 18.589 0.239 121.765 0.305

Weifang 0.096 0.023 18.852 0.245  117.231 0.292

In-Domain Urban—Urban | 0.106 0.028 17.478 0.240 125.345 0.310

Rural—Rural 0.097 0.024 18.715 0.241 115.984 0.298

Cross-Domain Urban—Rural 0.135 0.043 16.253 0.210 145.450 0.360

Rural—Urban 0.132 0.041 16.438 0.218 143.890 0.355

Table 3. Results for regional test set when trained with 10 regions or the entire urban (Charleston-U, Chicago, Paris, Savannah, Sittwe-U)
and rural regions (Bengbu, Charleston-R, San Francisco, Sittwe-R, Weifang).
337 We use the official codes for OpenEarthMap [35] and The SAR2Earth task aims to accurately predict the cor- 370
338 GeoChat, where the UnetFormer [31] model are used for rect EO image rather than simply generate plausible im- 371
339 land cover segmentation, and the 7B model are used for ages. Therefore, metrics such as perceptual scores and 372
340 GeoChat. For further details on the experimental setup of MSE, MAE are both important. Accordingly, we combined 373
341 land cover segmentation, please refer to supplementary ma- unpaired baselines that achieved high perceptual scores 374
342 terial. We strictly followed all the hyperparameters and set- with paired methods that obtained high MSE and MAE per- 375
343 tings from the original code. formance. We conducted experiments by applying Eq. 2 on 376
the paired images using existing unpaired methods such as 377
344 Evaluation metrics To evaluate the performance of the CycleGA.N, CUT, and StegoGAN. . . a8
345 SAR-to-EO image translation task, we use MAE (Mean Exper}mental resplts showed that the hyl:.)rl.d CUTin Ta- 379
346 Absolute Error), MSE (Mean Squared Error), PSNR (Peak ble 1 achieved the hllghest performance. This is because the 380
347 Signal-to-Noise Ratio), and SSIM (Structural Similarity In- ~ >/sR2Earth dataset is spatially aligned but temporally un- 381
348 dex Measure) to measure pixel-level accuracy and structural ahg'ned. As' a resulj[, Ob]e'cts like bl}lldlngs are mn a pa%red 382
349 similarity. These metrics capture the absolute and squared setting, while moving objects are mn an unpgured sethg. 383
350 differences between the generated and real EO images, as- Therefore, a baseline that considers both settings achieved 384
351 sess image quality in terms of noise (PSNR), and ensure the best performance. 385
352 structural consistency (SSIM), which are crucial for main- . .

353 taining fidelity in pixel values and structures in SAR-to-EO 5.3. Comparison of processing 386
354 translation. Comparison of de-noising SAR images contain a large 387
355 Additionally, we use FID (Fréchet Inception Distance) amount of speckle noise. This noise appears as granu- 388
356 and LPIPS (Learned Perceptual Image Patch Similarity) to lar interference, obscuring important features and textures 389
357 evaluate the perceptual quality and realism of the generated in the image. It complicates the feature extraction pro- 390
358 EO images. FID assesses the similarity in feature distri- cess in data-driven models by introducing high-frequency 391
359 butions between the generated and real EO images, while artifacts, making it challenging to learn accurate mappings 392
360 LPIPS focuses on perceptual differences based on deep fea- between SAR and EO images. To address this issue, de- 393
361 ture representations, ensuring that the generated images vi- noising methods have been applied, but because elementsin 394
362 sually resemble real EO data. SAR images that appear as noise can actually be important 395
. . signals, de-noising methods need to be applied carefully. 396
363 5.2. Comparison of baseline Table 2 shows the performance variations of SAR-to-EO 397
364 Table | presents the results of comparing image-to-image translation according to different de-noising methods. 398
365 translation methods on the SAR2Earth dataset. As observed The results in Table 2 demonstrate that as the de-noising 399
366 in the comparison table, methods under the paired setting methods become more advanced, performance improves. 400
367 achieved high accuracy results (MSE, MAE). In contrast, These experimental results indicate that in the SAR-to- 401
368 methods under the unpaired setting showed lower accuracy EO translation task, employing more advanced de-noising 402
369 (MSE, MAE) but attained higher perceptual scores (FID). methods positively impacts performance. 403
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CycleGAN
(hybrid)

Urban

Rural

StegoGAN CuT
(hybrid)

(hybrid) EO

Figure 4. Qualitative comparison of various image-to-image translation methods for SAR-to-EO translation in rural and urban cases.

Comparison of refinement We compared the perfor-
mance of SAR-to-EO translation with respect to post-
processing. For post-processing, we used [41], and during
training, we aimed for refinement by adding random defor-
mations (affine transforms, random Gaussian noise) to the
EO images. After that, we applied a refinement model to
the images translated from SAR-to-EO. We observed that
the FID score decreased from 136 to 128, indicating an im-
provement in perceptual quality, while the other scores did
not change significantly. As observed in the results, we con-
firmed that the performance improved slightly. Figure 3 il-
lustrates (a) the original SAR, (b) the denoised SAR, (c) the
synthetic EO, (d) the refined EO, and (e) the ground truth
EO. As shown in Figure 3, we confirmed that the artifacts
present in (c) disappeared in (d) through refinement. These
experimental results indicate the cause of the performance
improvement due to refinement.

5.4. Model Generalization evaluation

The characteristics of SAR images vary significantly by re-
gion due to radar backscatter, making it difficult to distin-
guish between surfaces with similar structures, like oceans
and flat areas. As a result, domain gaps in SAR data are
often larger than in EO imagery. To evaluate this, we con-
duct in-domain experiments by training and testing models
within the same region.

Urban areas, with their complex structures, present
larger domain gaps compared to rural areas, which tend to
have more uniform natural features. As shown in Table 3,
rural regions generally outperform urban areas in in-domain
evaluations across all metrics. Notably, training on com-
bined urban regions often yields better results than training
on a single region, likely due to increased data diversity.

However, for rural regions, training on individual regions
produces better results, suggesting that localized models
perform better for natural features.

In cross-domain experiments (Urban — Rural and Ru-
ral — Urban), we observe significant performance drops,
emphasizing the large differences between these domains.
Thus, for practical applications, collecting and training data
tailored to specific regional characteristics is more benefi-
cial than simply expanding the dataset without considering
regional uniqueness.

5.5. Qualitative results

Figure 4 qualitatively compares the results of SAR-to-EO

translation across different baselines. As shown in the fig-
ure, CUT (hybrid) produces the most visually plausible re-
sults. Specifically, in the second row, indicated by the green
dotted box, the SAR image does not contain an airplane sig-
nal, and all baselines succeed to generate an airplane in their
corresponding SAR-to-EO translation outputs. This exper-
iment demonstrates that, despite the temporally unaligned
nature of the SAR-to-EO setting, combining paired and un-
paired training approaches effectively mitigates this chal-
lenge.

In the rural example (third row), all baselines produce
more plausible images compared to their urban counter-
parts. However, as highlighted by the red dotted line, fully
paired methods like pix2pix and pix2pixHD tend to distort
features. This is due to the differing imaging angles be-
tween SAR and EO data, where SAR images are often cap-
tured from a perspective distinct from that of EO imagery.
As a result, the paired models attempt to generate EO-like
angles, even for features not present in the original SAR
image, creating non-existent structures in the SynEO out-
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User : Where is the biggest building located
and what is their type?

GeoChat : The biggest building is located at
{<78><85><86><93>| <90>}. It is a residential
building.

User : Where is the biggest building located
and what is their type?
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GeoChat : The biggest building is located at
{<1><76><17><92>| <905} It is a residential
building.
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User : Where is the biggest building located
and what is their type?

. GeoChat : The biggest building is located at
\ {<0><70><24><90>| <90>}. It is a residentia

building.
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(a) SAR Image

(b) Synthetic EO Image
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Figure 5. Comparison of visual grounding tasks using SAR, EO, and SynEO.

put. In contrast, baselines that combine paired and unpaired
approaches do not exhibit this distortion tendency, main-
taining consistency with the original SAR imagery. These
results suggest that if the goal is to generate EO-like an-
gles from SAR data, a paired setting is optimal. However,
if the aim is to faithfully replicate the appearance of SAR
imagery, a combined paired and unpaired training approach
is more effective.

5.6. Application

GeoChat  Figure 5 illustrates the results of testing SAR
images, SynEO images obtained through SAR-to-EO trans-
lation, and actual EO images using the GeoChat large lan-
guage model (LLM). As shown in the figure, when a SAR
image is input into GeoChat, the responses from the model
contain entirely incorrect content. This indicates a fail-
ure to interpret the SAR data accurately, primarily because
SAR images are excessively noisy and differ significantly
from the EO or RGB images on which LLMs are predomi-
nantly trained. In contrast, when the SynEO and EO images
are provided as input, GeoChat generates correct answers,
demonstrating its ability to understand and analyze these
images effectively.

Land Cover Segmentation As shown in Figure 06, the
land cover segmentation results show that SynEO images
lead to higher accuracy than SAR images, particularly for
artificial classes such as buildings and roads. This indicates
that using SynEO as input produces outputs more similar to
those from EO images, compared to directly using SAR im-
ages. Since most existing land cover segmentation models
are trained on EO images, applying them directly to SAR
data often results in suboptimal performance. Furthermore,
our results highlight the potential of leveraging SAR-to-EO
translation to expand the applicability of EO-trained models

SAR Synthetic EO EO GT

Figure 6. Inference results of SAR, SynEO, and EO images using
UnerFormer trained on grayscale OpenEarthMap. The bottom-
right corner of each prediction shows the mloU score.

to SAR data, enabling land cover segmentation across di-
verse classes despite the inherent differences between SAR
and EO imagery.

6. Conclusion

In this paper, we present SAR2Earth, a public benchmark
dataset for SAR-to-EO translation designed to support di-
verse remote sensing applications. We evaluate SAR2Earth
using state-of-the-art image-to-image translation models,
provide benchmark results, and perform ablation studies
on data pre-processing and model architecture. Addition-
ally, experiments on remote sensing applications such as
GeoChat and Land Cover Segmentation demonstrate the
potential of SAR-to-EO translation in enhancing data ac-
cessibility and utility. Our dataset and code are publicly
available to encourage future research in applications such
as disaster response and Al for social good.
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